Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.740
Filtrar
1.
J Neuromuscul Dis ; 11(2): 275-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277301

RESUMO

Dystroglycanopathies are a group of muscle degenerative diseases characterized with significant reduction in matriglycan expression critical in disease pathogenesis. Missense point mutations in the Fukutin-related protein (FKRP) gene cause variable reduction in the synthesis of matriglycan on alpha-dystroglycan (α-DG) and a wide range of disease severity. Data analyses of muscle biopsies from patients fail to show consistent correlation between the levels of matriglycan and clinical phenotypes. By reviewing clinical reports in conjunction with analysis of clinically relevant mouse models, we identify likely causes for the confusion. Nearly all missense FKRP mutations retain variable, but sufficient function for the synthesis of matriglycan during the later stage of muscle development and periods of muscle regeneration. These factors lead to a highly heterogenous pattern of matriglycan expression in diseased muscles, depending on age and stages of muscle regeneration. The limited size in clinical biopsy samples from different parts of even a single muscle tissue at different time points of disease progression may well mis-represent the residual function (base-levels) of the mutated FKRPs and phenotypes. We propose to use a simple Multi Point tool from ImageJ to more accurately measure the signal intensity of matriglycan expression on fiber membrane for assessing mutant FKRP function and therapeutic efficacy. A robust and sensitive immunohistochemical protocol would further improve reliability and comparability for the detection of matriglycan.


Assuntos
Distroglicanas , Pentosiltransferases , Animais , Humanos , Camundongos , Distroglicanas/genética , Distroglicanas/metabolismo , Glicosilação , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fenótipo , Reprodutibilidade dos Testes
2.
Mol Ther ; 31(12): 3478-3489, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37919902

RESUMO

Mutations in the fukutin-related protein (FKRP) gene cause dystroglycanopathy, with disease severity ranging from mild LGMD2I to severe congenital muscular dystrophy. Recently, considerable progress has been made in developing experimental therapies, with adeno-associated virus (AAV) gene therapy and ribitol treatment demonstrating significant therapeutic effect. However, each treatment has its strengths and weaknesses. AAV gene therapy can achieve normal levels of transgene expression, but it requires high doses, with toxicity concerns and variable distribution. Ribitol relies on residual FKRP function and restores limited levels of matriglycan. We hypothesized that these two treatments can work synergistically to offer an optimized therapy with efficacy and safety unmatched by each treatment alone. The most effective treatment is the combination of high-dose (5e-13 vg/kg) AAV-FKRP with ribitol, whereas low dose (1e-13 vg/kg) AAV-FKRP combined with ribitol showed a 22.6% increase in positive matriglycan fibers and the greater improvement in pathology when compared to low-dose AAV-FKRP alone. Together, our results support the potential benefits of combining ribitol with AAV gene therapy for treating FKRP-related muscular dystrophy. The fact that ribitol is a metabolite in nature and has already been tested in animal models and clinical trials in humans without severe side effects provides a safety profile for it to be trialed in combination with AAV gene therapy.


Assuntos
Distrofias Musculares , Pentosiltransferases , Animais , Humanos , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Pentosiltransferases/uso terapêutico , Ribitol/metabolismo , Ribitol/uso terapêutico , Dependovirus/genética , Dependovirus/metabolismo , Distroglicanas/metabolismo , Distrofias Musculares/tratamento farmacológico , Terapia Genética/métodos , Mutação , Músculo Esquelético/metabolismo
3.
Biochemistry ; 62(14): 2182-2201, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37418678

RESUMO

Over 70 million people are currently at risk of developing Chagas Disease (CD) infection, with more than 8 million people already infected worldwide. Current treatments are limited and innovative therapies are required. Trypanosoma cruzi, the etiological agent of CD, is a purine auxotroph that relies on phosphoribosyltransferases to salvage purine bases from their hosts for the formation of purine nucleoside monophosphates. Hypoxanthine-guanine-xanthine phosphoribosyltransferases (HGXPRTs) catalyze the salvage of 6-oxopurines and are promising targets for the treatment of CD. HGXPRTs catalyze the formation of inosine, guanosine, and xanthosine monophosphates from 5-phospho-d-ribose 1-pyrophosphate and the nucleobases hypoxanthine, guanine, and xanthine, respectively. T. cruzi possesses four HG(X)PRT isoforms. We previously reported the kinetic characterization and inhibition of two isoforms, TcHGPRTs, demonstrating their catalytic equivalence. Here, we characterize the two remaining isoforms, revealing nearly identical HGXPRT activities in vitro and identifying for the first time T. cruzi enzymes with XPRT activity, clarifying their previous annotation. TcHGXPRT follows an ordered kinetic mechanism with a postchemistry event as the rate-limiting step(s) of catalysis. Its crystallographic structures reveal implications for catalysis and substrate specificity. A set of transition-state analogue inhibitors (TSAIs) initially developed to target the malarial orthologue were re-evaluated, with the most potent compound binding to TcHGXPRT with nanomolar affinity, validating the repurposing of TSAIs to expedite the discovery of lead compounds against orthologous enzymes. We identified mechanistic and structural features that can be exploited in the optimization of inhibitors effective against TcHGPRT and TcHGXPRT concomitantly, which is an important feature when targeting essential enzymes with overlapping activities.


Assuntos
Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Pentosiltransferases/metabolismo , Purinas/farmacologia , Purinas/química , Guanina/metabolismo
4.
ChemMedChem ; 18(17): e202300207, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37350546

RESUMO

A library of queuine analogues targeting the modification of tRNA isoacceptors for Asp, Asn, His and Tyr catalysed by queuine tRNA ribosyltransferase (QTRT, also known as TGT) was evaluated in the treatment of a chronic multiple sclerosis model: murine experimental autoimmune encephalomyelitis. Several active 7-deazaguanines emerged, together with a structure-activity relationship involving the necessity for a flexible alkyl chain of fixed length.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , RNA de Transferência , Relação Estrutura-Atividade , Pentosiltransferases/metabolismo
5.
Cells ; 12(8)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190056

RESUMO

Pluripotent stem (PS) cells enable the scalable production of tissue-specific derivatives with therapeutic potential for various clinical applications, including muscular dystrophies. Given the similarity to human counterparts, the non-human primate (NHP) is an ideal preclinical model to evaluate several questions, including delivery, biodistribution, and immune response. While the generation of human-induced PS (iPS)-cell-derived myogenic progenitors is well established, there have been no data for NHP counterparts, probably due to the lack of an efficient system to differentiate NHP iPS cells towards the skeletal muscle lineage. Here, we report the generation of three independent Macaca fascicularis iPS cell lines and their myogenic differentiation using PAX7 conditional expression. The whole-transcriptome analysis confirmed the successful sequential induction of mesoderm, paraxial mesoderm, and myogenic lineages. NHP myogenic progenitors efficiently gave rise to myotubes under appropriate in vitro differentiation conditions and engrafted in vivo into the TA muscles of NSG and FKRP-NSG mice. Lastly, we explored the preclinical potential of these NHP myogenic progenitors in a single wild-type NHP recipient, demonstrating engraftment and characterizing the interaction with the host immune response. These studies establish an NHP model system through which iPS-cell-derived myogenic progenitors can be studied.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Distribuição Tecidual , Células-Tronco Pluripotentes/metabolismo , Músculo Esquelético/metabolismo , Primatas , Pentosiltransferases/metabolismo
6.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047056

RESUMO

Nucleoside analogues are important compounds for the treatment of viral infections or cancers. While (chemo-)enzymatic synthesis is a valuable alternative to traditional chemical methods, the feasibility of such processes is lowered by the high production cost of the biocatalyst. As continuous enzyme membrane reactors (EMR) allow the use of biocatalysts until their full inactivation, they offer a valuable alternative to batch enzymatic reactions with freely dissolved enzymes. In EMRs, the enzymes are retained in the reactor by a suitable membrane. Immobilization on carrier materials, and the associated losses in enzyme activity, can thus be avoided. Therefore, we validated the applicability of EMRs for the synthesis of natural and dihalogenated nucleosides, using one-pot transglycosylation reactions. Over a period of 55 days, 2'-deoxyadenosine was produced continuously, with a product yield >90%. The dihalogenated nucleoside analogues 2,6-dichloropurine-2'-deoxyribonucleoside and 6-chloro-2-fluoro-2'-deoxyribonucleoside were also produced, with high conversion, but for shorter operation times, of 14 and 5.5 days, respectively. The EMR performed with specific productivities comparable to batch reactions. However, in the EMR, 220, 40, and 9 times more product per enzymatic unit was produced, for 2'-deoxyadenosine, 2,6-dichloropurine-2'-deoxyribonucleoside, and 6-chloro-2-fluoro-2'-deoxyribonucleoside, respectively. The application of the EMR using freely dissolved enzymes, facilitates a continuous process with integrated biocatalyst separation, which reduces the overall cost of the biocatalyst and enhances the downstream processing of nucleoside production.


Assuntos
Nucleosídeos , Pentosiltransferases , Nucleosídeos/química , Pentosiltransferases/metabolismo , Enzimas Imobilizadas/química , Biocatálise , Desoxirribonucleosídeos , Purina-Núcleosídeo Fosforilase/metabolismo
7.
Nucleic Acids Res ; 51(8): 3836-3854, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36928176

RESUMO

The modified nucleosides 2'-deoxy-7-cyano- and 2'-deoxy-7-amido-7-deazaguanosine (dPreQ0 and dADG, respectively) recently discovered in DNA are the products of the bacterial queuosine tRNA modification pathway and the dpd gene cluster, the latter of which encodes proteins that comprise the elaborate Dpd restriction-modification system present in diverse bacteria. Recent genetic studies implicated the dpdA, dpdB and dpdC genes as encoding proteins necessary for DNA modification, with dpdD-dpdK contributing to the restriction phenotype. Here we report the in vitro reconstitution of the Dpd modification machinery from Salmonella enterica serovar Montevideo, the elucidation of the roles of each protein and the X-ray crystal structure of DpdA supported by small-angle X-ray scattering analysis of DpdA and DpdB, the former bound to DNA. While the homology of DpdA with the tRNA-dependent tRNA-guanine transglycosylase enzymes (TGT) in the queuosine pathway suggested a similar transglycosylase activity responsible for the exchange of a guanine base in the DNA for 7-cyano-7-deazaguanine (preQ0), we demonstrate an unexpected ATPase activity in DpdB necessary for insertion of preQ0 into DNA, and identify several catalytically essential active site residues in DpdA involved in the transglycosylation reaction. Further, we identify a modification site for DpdA activity and demonstrate that DpdC functions independently of DpdA/B in converting preQ0-modified DNA to ADG-modified DNA.


Assuntos
DNA , Nucleosídeo Q , DNA/genética , Guanina/metabolismo , RNA de Transferência/metabolismo , Pentosiltransferases/metabolismo
8.
J Biochem ; 173(5): 333-335, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36760122

RESUMO

Dystroglycan (DG), a muscular transmembrane protein, plays a critical role in transducing extracellular matrix-derived signals to the cytoskeleton and provides physical strength to skeletal muscle cell membranes. The extracellular domain of DG, α-DG, displays unique glycosylation patterns. Fully functional glycosylation is required for this domain to interact with components of extracellular matrices, including laminin. One of the unique sugar compositions found in such functional glycans on DG is two ribitol phosphates that are transferred by the sequential actions of fukutin (FKTN) and fukutin-related protein (FKRP), which use CDP-ribitol as a donor substrate. These are then further primed for matriglycan biosynthesis. A recent in vitro study reported that glycerol phosphate could be similarly added to α-DG by FKTN and FKRP if they used CDP-glycerol (CDP-Gro) as a donor substrate. However, the physiological relevance of these findings remains elusive. Imae et al. addressed the knowledge gap regarding whether CDP-Gro is present in mammals and how CDP-Gro is synthesized and functions in mammals.


Assuntos
Distroglicanas , Pentosiltransferases , Animais , Distroglicanas/metabolismo , Glicerol , Glicosilação , Pentosiltransferases/metabolismo , Ribitol/metabolismo , Ribitol/farmacologia
9.
Acta Myol ; 42(4): 106-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38406381

RESUMO

Fukutin-related protein (FKRP) mutations cause a broad spectrum of muscular dystrophies, from a relatively mild limb-girdle muscular dystrophy type 9 (LGMDR9) to severe congenital muscular dystrophy (CMD). This study aims to report two siblings belonging to a non-consanguineous Tunisian family harboring a novel compound heterozygous FKRP variant and presenting a mild LGDMR9 phenotype. For mutation screening, massive parallel sequencing was performed, followed by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to validate the existence of the discovered variants. The absence of alpha-dystroglycan was determined by immunohistochemistry. Brain and thigh magnetic resonance imaging (MRI) were performed to detect thigh and brain abnormalities. The two siblings had a late age at onset and clinical examination showed that the pelvic girdles had a predominantly proximal and symmetrical distribution of weakness without cardiac or respiratory involvement. They both had a modified Gardner-Medwin Walton Scale mGMWS grade of 4 and a modified Rankin Scale (mRS) score of 1. The DNA sequencing revealed a novel deletion of exons 2 and 3 in one allele and a missense mutation c.1364C > A, which has been reported to be responsible for congenital muscular dystrophy and mental retardation on the second allele. The simultaneous presence of the two variations in the two cases suggests that the variants segregate with the pathophysiology.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Músculo Esquelético/patologia , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Distrofias Musculares/congênito , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fenótipo , Proteínas/genética , Proteínas/metabolismo
10.
Sci Rep ; 12(1): 17175, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229494

RESUMO

Cobamides (Cbas) are coenzymes used by cells across all domains of life, but de novo synthesis is only found in some bacteria and archaea. Five enzymes assemble the nucleotide loop in the alpha phase of the corrin ring. Condensation of the activated ring and nucleobase yields adenosyl-Cba 5'-phosphate, which upon dephosphorylation yields the biologically active coenzyme (AdoCba). Base activation is catalyzed by a phosphoribosyltransferase (PRTase). The structure of the Salmonella enterica PRTase enzyme (i.e., SeCobT) is well-characterized, but archaeal PRTases are not. To gain insights into the mechanism of base activation by the PRTase from Methanocaldococcus jannaschii (MjCobT), we solved crystal structures of the enzyme in complex with substrate and products. We determined several structures: (i) a 2.2 Å structure of MjCobT in the absence of ligand (apo), (ii) structures of MjCobT bound to nicotinate mononucleotide (NaMN) and α-ribazole 5'-phosphate (α-RP) or α-adenylyl-5'-phosphate (α-AMP) at 2.3 and 1.4 Å, respectively. In MjCobT the general base that triggers the reaction is an aspartate residue (Asp 52) rather than a glutamate residue (E317) as in SeCobT. Notably, the dimer interface in MjCobT is completely different from that observed in SeCobT. Finally, entry PDB 3L0Z does not reflect the correct structure of MjCobT.


Assuntos
Cianobactérias , Euryarchaeota , Monofosfato de Adenosina , Archaea/metabolismo , Ácido Aspártico , Cobamidas/metabolismo , Cristalografia por Raios X , Cianobactérias/metabolismo , Euryarchaeota/metabolismo , Glutamatos , Ligantes , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fosfatos/metabolismo
11.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233108

RESUMO

One of the major drawbacks of the industrial implementation of enzymatic processes is the low operational stability of the enzymes under tough industrial conditions. In this respect, the use of thermostable enzymes in the industry is gaining ground during the last decades. Herein, we report a structure-guided approach for the development of novel and thermostable 2'-deoxyribosyltransferases (NDTs) based on the computational design of disulfide bonds on hot spot positions. To this end, a small library of NDT variants from Lactobacillus delbrueckii (LdNDT) with introduced cysteine pairs was created. Among them, LdNDTS104C (100% retained activity) was chosen as the most thermostable variant, displaying a six- and two-fold enhanced long-term stability when stored at 55 °C (t1/255 °C ≈ 24 h) and 60 °C (t1/260 °C ≈ 4 h), respectively. Moreover, the biochemical characterization revealed that LdNDTS104C showed >60% relative activity across a broad range of temperature (30−90 °C) and pH (5−7). Finally, to study the potential application of LdNDTS104C as an industrial catalyst, the enzymatic synthesis of nelarabine was successfully carried out under different substrate conditions (1:1 and 3:1) at different reaction times. Under these experimental conditions, the production of nelarabine was increased up to 2.8-fold (72% conversion) compared with wild-type LdNDT.


Assuntos
Enzimas Imobilizadas , Pentosiltransferases , Arabinonucleosídeos , Cisteína , Dissulfetos/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Pentosiltransferases/metabolismo , Especificidade por Substrato , Temperatura
12.
ACS Chem Biol ; 17(6): 1513-1523, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35670527

RESUMO

Ribitol phosphate modifications to the core M3 O-mannosyl glycan are important for the functional maturation of α-dystroglycan. Three sequentially extended partial structures of the core M3 O-mannosyl glycan including a tandem ribitol phosphate were regio- and stereo-selectively synthesized: Rbo5P-3GalNAcß, Rbo5P-1Rbo5P-3GalNAcß, and Xylß1-4Rbo5P-1Rbo5P-3GalNAcß (Rbo5P, d-ribitol-5-phosphate; GalNAc, N-acetyl-d-galactosamine; Xyl, d-xylose). Rbo5P-3GalNAcß with p-nitrophenyl at the aglycon part served as a substrate for ribitol phosphate transferase (FKRP, fukutin-related protein), and its product was glycosylated by the actions of a series of glycosyltransferases, namely, ribitol xylosyltransferase 1 (RXYLT1), ß1,4-glucuronyltransferase 1 (B4GAT1), and like-acetyl-glucosaminyltransferase (LARGE). Rbo5P-3GalNAcß equipped with an alkyne-type aglycon was also active for FKRP. The molecular information obtained on FKRP suggests that Rbo5P-3GalNAcß derivatives are the minimal units required as the acceptor glycan for Rbo5P transfer and may serve as a precursor for the elongation of the core M3 O-mannosyl glycan.


Assuntos
Fosfatos , Ribitol , Distroglicanas/química , Distroglicanas/metabolismo , Glicosilação , Pentosiltransferases/metabolismo , Polissacarídeos/metabolismo , Ribitol/metabolismo
13.
Int J Mol Sci ; 23(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563435

RESUMO

BACKGROUND: Xylosyltransferases-I and II (XT-I and XT-II) catalyze the initial and rate limiting step of the proteoglycan (PG) biosynthesis and therefore have an import impact on the homeostasis of the extracellular matrix (ECM). The reason for the occurrence of two XT-isoforms in all higher organisms remains unknown and targeted genome-editing strategies could shed light on this issue. METHODS: XT-I deficient neonatal normal human dermal fibroblasts were generated by using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated proteins (Cas) 9 system. We analyzed if a reduced XT-I activity leads to abnormalities regarding ECM-composition, myofibroblast differentiation, cellular senescence and skeletal and cartilage tissue homeostasis. RESULTS: We successfully introduced compound heterozygous deletions within exon 9 of the XYLT1 gene. Beside XYLT1, we detected altered gene-expression levels of further, inter alia ECM-related, genes. Our data further reveal a dramatically reduced XT-I protein activity. Abnormal myofibroblast-differentiation was demonstrated by elevated alpha-smooth muscle actin expression on both, mRNA- and protein level. In addition, wound-healing capability was slightly delayed. Furthermore, we observed an increased cellular-senescence of knockout cells and an altered expression of target genes knowing to be involved in skeletonization. CONCLUSION: Our data show the tremendous relevance of the XT-I isoform concerning myofibroblast-differentiation and ECM-homeostasis as well as the pathophysiology of skeletal disorders.


Assuntos
Sistemas CRISPR-Cas , Pentosiltransferases , Pele , Sistemas CRISPR-Cas/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Edição de Genes , Humanos , Recém-Nascido , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Pele/metabolismo
14.
Bioessays ; 44(5): e2100270, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35229908

RESUMO

The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.


Assuntos
Fibronectinas , Distrofias Musculares , Distroglicanas/genética , Distroglicanas/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Glicosilação , Humanos , Músculo Esquelético , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Mutação , Pentosiltransferases/genética , Pentosiltransferases/metabolismo
15.
J Med Chem ; 65(5): 4030-4057, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35175749

RESUMO

Pathogens such as Plasmodium and Trypanosoma spp. are unable to synthesize purine nucleobases. They rely on the salvage of these purines and their nucleosides from the host cell to synthesize the purine nucleotides required for DNA/RNA production. The key enzymes in this pathway are purine phosphoribosyltransferases (PRTs). Here, we synthesized 16 novel acyclic nucleoside phosphonates, 12 with a chiral center at C-2', and eight bearing a second chiral center at C-6'. Of these, bisphosphonate (S,S)-48 is the most potent inhibitor of the Plasmodium falciparum and P. vivax 6-oxopurine PRTs and the most potent inhibitor of two Trypanosoma brucei (Tbr) 6-oxopurine PRTs yet discovered, with Ki values as low as 2 nM. Crystal structures of (S,S)-48 in complex with human and Tbr 6-oxopurine PRTs show that the inhibitor binds to the enzymes in different conformations, providing an explanation for its potency and selectivity (i.e., 35-fold in favor of the parasite enzymes).


Assuntos
Antimaláricos , Organofosfonatos , Parasitos , Pentosiltransferases/metabolismo , Animais , Antimaláricos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Nucleosídeos/química , Nucleosídeos/farmacologia , Organofosfonatos/química , Organofosfonatos/farmacologia , Plasmodium falciparum , Purinonas
16.
J Biol Inorg Chem ; 27(2): 221-227, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35094116

RESUMO

Orthovanadate was shown to serve as a substrate for nucleoside phosphorylases from Escherichia coli, Shewanella oneidensis, Geobacillus stearothermophilus, and Halomonas chromatireducens AGD 8-3. An exception is thymidine phosphorylase from the extremophilic haloalkaliphilic bacterium Halomonas chromatireducens AGD 8-3, which cannot catalyze the vanadolysis of nucleosides. The kinetic parameters of nucleoside vanadolysis were evaluated.


Assuntos
Nucleosídeos , Vanadatos , Escherichia coli/metabolismo , Halomonas , Pentosiltransferases/química , Pentosiltransferases/metabolismo , Especificidade por Substrato
17.
Vet Comp Oncol ; 20(2): 372-380, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34724324

RESUMO

We tested the efficacy of a yeast cytosine deaminase::uracil phosphoribosyl transferase/5-fluorocytosine (CDU/5-FC) non-viral suicide system on eight established canine melanoma cell lines. Albeit with different degree of sensitivity 5 days after lipofection, this system was significantly efficient killing melanoma cells, being four cell lines highly, two fairly and two not very sensitive to CDU/5-FC (their respective IC50 ranging from 0.20 to 800 µM 5-FC). Considering the relatively low lipofection efficiencies, a very strong bystander effect was verified in the eight cell lines: depending on the cell line, this effect accounted for most of the induced cell death (from 70% to 95%). In our assay conditions, we did not find useful interactions either with the herpes simplex thymidine kinase/ganciclovir suicide system (in sequential or simultaneous modality) or with cisplatin and bleomycin chemotherapeutic drugs. Furthermore, only two cell lines displayed limited useful interactions of the CDU/5-FC either with interferon-ß gene transfer or the proteasome inhibitor bortezomib respectively. These results would preclude a wide use of these combinations. However, the fact that all the tested cells were significantly sensitive to the CDU/5-FC system encourages further research as a gene therapy tool for local control of canine melanoma.


Assuntos
Doenças do Cão , Melanoma , Pentosiltransferases , Animais , Cães , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Doenças do Cão/tratamento farmacológico , Flucitosina/metabolismo , Flucitosina/farmacologia , Flucitosina/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/veterinária , Pentosiltransferases/metabolismo , Timidina Quinase/genética , Uracila , Morte Celular
18.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34793337

RESUMO

The biosynthetic routes leading to de novo nicotinamide adenine dinucleotide (NAD+) production are involved in acute kidney injury (AKI), with a critical role for quinolinate phosphoribosyl transferase (QPRT), a bottleneck enzyme of de novo NAD+ biosynthesis. The molecular mechanisms determining reduced QPRT in AKI, and the role of impaired NAD+ biosynthesis in the progression to chronic kidney disease (CKD), are unknown. We demonstrate that a high urinary quinolinate-to-tryptophan ratio, an indirect indicator of impaired QPRT activity and reduced de novo NAD+ biosynthesis in the kidney, is a clinically applicable early marker of AKI after cardiac surgery and is predictive of progression to CKD in kidney transplant recipients. We also provide evidence that the endoplasmic reticulum (ER) stress response may impair de novo NAD+ biosynthesis by repressing QPRT transcription. In conclusion, NAD+ biosynthesis impairment is an early event in AKI embedded with the ER stress response, and persistent reduction of QPRT expression is associated with AKI to CKD progression. This finding may lead to identification of noninvasive metabolic biomarkers of kidney injury with prognostic and therapeutic implications.


Assuntos
Injúria Renal Aguda/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Rim/metabolismo , NAD/biossíntese , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pentosiltransferases/metabolismo , Ácido Quinolínico/urina , Triptofano/urina
19.
J Mol Biol ; 434(2): 167393, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34896363

RESUMO

SLC23 family members are transporters of either nucleobases or ascorbate. While the mammalian SLC23 ascorbate transporters are sodium-coupled, the non-mammalian nucleobase transporters have been proposed, but not formally shown, to be proton-coupled symporters. This assignment is exclusively based on in vivo transport assays using protonophores. Here, by establishing the first in vitro transport assay for this protein family, we demonstrate that a representative member of the SLC23 nucleobase transporters operates as a uniporter instead. We explain these conflicting assignments by identifying a critical role of uracil phosphoribosyltransferase, the enzyme converting uracil to UMP, in driving uracil uptake in vivo. Detailed characterization of uracil phosphoribosyltransferase reveals that the sharp reduction of uracil uptake in whole cells in presence of protonophores is caused by acidification-induced enzyme inactivation. The SLC23 family therefore consists of both uniporters and symporters in line with the structurally related SLC4 and SLC26 families that have previously been demonstrated to accommodate both transport modes as well.


Assuntos
Transporte Biológico/fisiologia , Transporte de Íons , Proteínas de Membrana Transportadoras/química , Prótons , Animais , Ácido Ascórbico/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Domínio Catalítico , Escherichia coli , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Nucleobases/química , Proteínas de Transporte de Nucleobases/metabolismo , Pentosiltransferases/química , Pentosiltransferases/metabolismo , Sódio/metabolismo , Simportadores , Uracila/metabolismo
20.
Nucleic Acids Res ; 49(22): 12986-12999, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34883512

RESUMO

Every type of nucleic acid in cells undergoes programmed chemical post-transcriptional modification. Generally, modification enzymes use substrates derived from intracellular metabolism, one exception is queuine (q)/queuosine (Q), which eukaryotes obtain from their environment; made by bacteria and ultimately taken into eukaryotic cells via currently unknown transport systems. Here, we use a combination of molecular, cell biology and biophysical approaches to show that in Trypanosoma brucei tRNA Q levels change dynamically in response to concentration variations of a sub-set of amino acids in the growth media. Most significant were variations in tyrosine, which at low levels lead to increased Q content for all the natural tRNAs substrates of tRNA-guanine transglycosylase (TGT). Such increase results from longer nuclear dwell time aided by retrograde transport following cytoplasmic splicing. In turn high tyrosine levels lead to rapid decrease in Q content. Importantly, the dynamic changes in Q content of tRNAs have negligible effects on global translation or growth rate but, at least, in the case of tRNATyr it affected codon choice. These observations have implications for the occurrence of other tunable modifications important for 'normal' growth, while connecting the intracellular localization of modification enzymes, metabolites and tRNAs to codon selection and implicitly translational output.


Assuntos
Códon/metabolismo , Nucleosídeo Q/metabolismo , Nutrientes/metabolismo , RNA de Transferência/metabolismo , Trypanosoma brucei brucei/metabolismo , Aminoácidos/metabolismo , Cromatografia Líquida/métodos , Códon/genética , Guanina/análogos & derivados , Guanina/metabolismo , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Splicing de RNA , RNA de Transferência/genética , RNA de Transferência de Tirosina/genética , RNA de Transferência de Tirosina/metabolismo , Espectrometria de Massas em Tandem/métodos , Trypanosoma brucei brucei/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...